Криптономикон, часть 1 - Страница 8


К оглавлению

8

Через некоторое время Лоуренс перестал видеть что-нибудь новое, сел на велосипед и поехал к Сосновой пустоши, но заблудился в темноте и добрался до сторожевой башни уже после рассвета. Впрочем, он ничуть не горевал, что сбился с дороги, потому что думал про машину Тьюринга. В конце концов он все-таки добрался до озера, где стояла палатка. Спокойная гладь алела в лучах рассвета, как лужа крови. Алан Матисон Тьюринг и Рудольф фон Хакльгебер спали на берегу, сложившись, как ложки, еще немного грязные после ночного купания. Пока Лоуренс разводил костерок и готовил чай, они проснулись.

— Решил задачку? — спросил Алан.

— Ты можешь превратить свою Универсальную Машину Тьюринга в любую машину, меняя регистровки.

— Что меняя?

— Прости, Алан. Я думаю о твоей УМТ как о своего рода органе.

— А.

— После этого машина может выполнять любые вычисления, какие тебе угодно, лишь бы лента была достаточно длинной. Но, черт возьми, Алан, сделать такую длинную ленту, на которой можно было бы писать и стирать, — жуткая морока. Машина Атанасова работала только до определенного размера, и тебе придется…

— Речь о другом, — мягко сказал Алан.

— Ладно, хорошо. Если у тебя есть такая машина, то каждую конкретную комбинацию регистров можно обозначить числом — цепочкой символов. А лента, которую ты в нее запускаешь, чтобы начать вычисление, — другая цепочка символов. Так что это снова Гёделево доказательство: если любую возможную комбинацию регистров и данных на ленте можно представить в виде цепочки чисел, значит, ты можешь поместить все возможные цепочки в большую таблицу, применить к ней Канторов диагональный процесс, и ответ: да, должны быть некоторые числа, которые нельзя пересчитать.

— А Entscheidungsproblem? — напомнил Руди.

— Доказать или опровергнуть формулу — после того, как ты зашифровал ее числом — значит просто рассчитать это число. Значит, ответ — нет! Некоторые формулы нельзя доказать или опровергнуть механическим процессом! Выходит, не так уж плохо быть человеком!

До этих слов Алан казался довольным, потом его лицо вытянулось.

— Ну вот, теперь ты делаешь непрошеные допущения.

— Не слушай его, Лоуренс! — сказал Руди. — Сейчас он заявит, что наш мозг — машина Тьюринга.

— Спасибо, Руди, — спокойно ответил Алан. — Лоуренс, я утверждаю, что наш мозг — машина Тьюринга.

— Но ты доказал, что есть целый ряд формул, с которыми машина Тьюринга не справляется!

— И ты это доказал, Лоуренс.

— А тебе не кажется, что мы можем то, чего не может машина Тьюринга?

— Гёдель с тобой согласен, Лоуренс, — вставил Руди, — и Харди тоже.

— Приведите пример, — попросил Алан.

— Невычислимой функции, с которой человек справится, а машина Тьюринга — нет?

— Да. Только не надо сентиментальной чепухи про творчество. Уверен, Универсальная Машина Тьюринга способна демонстрировать поведение, которое мы воспримем как творческое.

— Ну, не знаю… Буду думать.

Позже, когда они ехали к Принстону, Лоуренс спросил:

— Как насчет снов?

— Вроде твоих ангелов в церкви?

— Примерно.

— Просто шум в нейронах, Лоуренс.

— А еще мне вчера ночью приснилось, что горел цеппелин.


Вскоре защитившись и уехав в Англию, Алан прислал Лоуренсу пару писем. В последнем он сообщал просто, что больше не сможет писать «о серьезном», и просил не принимать это на свой счет. Лоуренс сразу догадался, что сообщество, к которому принадлежит Алан, приставило его к полезному делу — скорее всего вычислять, как бы их не съели заживо соседи. Интересно, какое применение найдет Америка ему?

Он вернулся в Айовский Государственный, подумывая перевестись на математический факультет, однако делать этого не стал. Все, с кем он советовался, говорили, что математика, как и ремонт органов, — дело замечательное, но надо подумать и о хлебе насущном. Лоуренс остался на инженерном и учился все хуже и хуже, пока в середине последнего курса деканат не порекомендовал ему заняться чем-нибудь полезным, скажем, ремонтом крыш. Лоуренс вылетел из колледжа в гостеприимные объятия ВМФ.

Ему дали тест на проверку умственных способностей. Первая задача по математике была такой: порт Смит на 100 миль выше по течению, чем порт Джонс. Скорость течения — 5 миль в час. Скорость лодки — 10 миль в час. За какое время лодка доберется из порта Смита в порт Джонс? За какое время она проделает обратный путь?

Лоуренс тут же понял, что задачка с подвохом. Нужно быть полным идиотом, чтобы предположить, будто течение увеличивает и уменьшает скорость лодки на 5 миль в час. Ясно, что 5 миль в час — всего лишь средняя скорость. Течение быстрее в середине реки, медленнее — у берегов; более сложные вариации следует ожидать на излучинах реки. По сути это вопрос гидродинамики, который решается с помощью хорошо известных дифференциальных уравнений. Лоуренс нырнул в задачку и быстро (или так ему казалось) исписал вычислениями десять листов. По ходу он осознал, что одна его посылка вместе с упрощенным уравнением Навье-Стокса приводит к очень занятной семейке частных дифференциальных уравнений. Он не успел очухаться, как доказал теорему. Если это не подтверждает его умственный уровень, то что тогда подтверждает?

Тут прозвенел звонок и собрали работы. Лоуренс сумел спасти черновик. Он отнес листок в казарму, перепечатал на машинке и отправил в Принстон одному из наиболее демократичных преподавателей математики, который тут же договорился о публикации в парижском журнале.

Лоуренс получил два свежих бесплатных оттиска несколько месяцев спустя, при раздаче почты на борту линкора «Невада». На корабле был оркестр, и Лоуренсу поручили играть в нем на глокеншпиле: тест показал, что ни на что более умное он не способен.

8